Immune therapy is a successful cancer treatment coming into its own. This is because checkpoint molecules, adoptive specific lymphocyte transfer and chimeric antigen T-cell (CAR-T) therapy are able to induce more durable responses in an increasing number of malignancies compared to chemotherapy. In addition, immune therapies are able to treat bulky disease, whereas standard cytotoxic therapies cannot treat large tumour burdens. Checkpoint inhibitor monoclonal antibodies are becoming widely used in the clinic and although more complex, adoptive lymphocyte transfer and CAR-T therapies show promise. We are learning that there are nuances to predicting the successful use of the checkpoint inhibitors as well as to specific-antigen adoptive and CAR-T therapies. We are also newly aware of a here-to-fore unrealised natural force, the status of the microbiome. However, despite better understanding of mechanisms of action of the new immune therapies, the best responses to the new immune therapies remain 20-30%. Likely the best way to improve this somewhat low response rate for patients is to increase the patient's own immune response. Thermal therapy is a way to do this. All forms of thermal therapy, from fever-range systemic thermal therapy, to high-temperature HIFU and even cryotherapy improve the immune response pre-clinically. It is time to test the immune therapies with thermal therapy in vivo to test for optimal timing of the combinations that will best enhance tumour response and then to begin to test the immune therapies with thermal therapy in the clinic as soon as possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02656736.2017.1387938 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!