Hydrogen peroxide (H₂O₂) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. × is an important cultivated forest species with resistance to cold, drought, insect and disease, and also a key model plant for forest genetic engineering. In this study, H₂O₂ response in leaves was investigated using physiological and proteomics approaches. The seedlings of 50-day-old under H₂O₂ stress exhibited stressful phenotypes, such as increase of in vivo H₂O₂ content, decrease of photosynthetic rate, elevated osmolytes, antioxidant accumulation, as well as increased activities of several ROS scavenging enzymes. Besides, 81 H₂O₂-responsive proteins were identified in the poplar leaves. The diverse abundant patterns of these proteins highlight the H₂O₂-responsive pathways in leaves, including 14-3-3 protein and nucleoside diphosphate kinase (NDPK)-mediated signaling, modulation of thylakoid membrane structure, enhancement of various ROS scavenging pathways, decrease of photosynthesis, dynamics of proteins conformation, and changes in carbohydrate and other metabolisms. This study provides valuable information for understanding H₂O₂-responsive mechanisms in leaves of × .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666767 | PMC |
http://dx.doi.org/10.3390/ijms18102085 | DOI Listing |
Background: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Adv Res
January 2025
the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China. Electronic address:
Introduction: Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Food Science and Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105 China. Electronic address:
Microalgal exopolysaccharides (EPS) possess significant functional benefits across various industrial sectors, but their commercial feasibility is constrained by inefficient synthesis and poorly understood synthesis mechanisms. This study found that 1.25 mmol/L sodium bisulfite promoted EPS accumulation to 224.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!