High-intensity urban light installation dramatically alters nocturnal bird migration.

Proc Natl Acad Sci U S A

Information Science Program, Cornell Lab of Ornithology, Ithaca, NY 14850;

Published: October 2017

Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museum's "Tribute in Light" in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations. This single light source induced significant behavioral alterations in birds, even in good visibility conditions, in this heavily photopolluted environment, and to altitudes up to 4 km. We estimate that the installation influenced ≈1.1 million birds during our study period of 7 d over 7 y. When the installation was illuminated, birds aggregated in high densities, decreased flight speeds, followed circular flight paths, and vocalized frequently. Simulations revealed a high probability of disorientation and subsequent attraction for nearby birds, and bird densities near the installation exceeded magnitudes 20 times greater than surrounding baseline densities during each year's observations. However, behavioral disruptions disappeared when lights were extinguished, suggesting that selective removal of light during nights with substantial bird migration is a viable strategy for minimizing potentially fatal interactions among ALAN, structures, and birds. Our results also highlight the value of additional studies describing behavioral patterns of nocturnally migrating birds in powerful lights in urban areas as well as conservation implications for such lighting installations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651764PMC
http://dx.doi.org/10.1073/pnas.1708574114DOI Listing

Publication Analysis

Top Keywords

migrating birds
12
bird migration
8
nocturnally migrating
8
birds
8
urban areas
8
light
5
high-intensity urban
4
urban light
4
installation
4
light installation
4

Similar Publications

In this study, we (a) inventoried the breeding bird community of a town located in Northern Italy using quadrat sampling, (b) quantified bird richness and abundance, (c) measured sample completeness, (d) tested whether the bird community assembly was driven by environmental filtering (i.e., local properties of every single quadrat), e) explained bird richness and abundance in light of the land cover types present in each quadrat, (f) disentangled the marginal effects of every land cover type, and (g) simulated the effects on birds of different planning decisions.

View Article and Find Full Text PDF

Most species of migrating birds use a combination of innate vector-based orientation programs and social information to facilitate accurate navigation during their life. A number of various interspecies hybridisations have been reported in birds. The traits of parents are expressed in hybrids in typical ways which are either intermediate, combined or heterotic.

View Article and Find Full Text PDF

Vertical seed dispersal towards higher or lower altitudes is an important process for plants' adaptation to climate change. Although many plants depend on animals for seed dispersal, studies on vertical seed dispersal by animals, determined by complex animal behaviours, are scarce. Previous studies hypothesised that animals inhabiting temperate regions disperse seeds uphill in spring/summer and downhill in autumn/winter due to their seasonal movement following the altitudinal gradients in food phenology.

View Article and Find Full Text PDF

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

The Influence of Migration Timing and Local Conditions on Reproductive Timing in Arctic-Breeding Birds.

Ecol Evol

January 2025

Wildlife Research Division Environment and Climate Change Canada Ottawa Ontario Canada.

For birds breeding in the Arctic, nest success is affected by the timing of nest initiation, which is partially determined by local conditions such as snow cover. However, conditions during the non-breeding season can carry over to affect the timing of breeding. We used tracking and breeding data from 248 individuals of 8 species and subspecies of Arctic-breeding shorebirds to estimate how the timing of nest initiation is related to local conditions like snowmelt phenology versus prior conditions, measured by the timing and speed of migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!