We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642729 | PMC |
http://dx.doi.org/10.1073/pnas.1714464114 | DOI Listing |
PLoS One
January 2025
Department of Pulmonary Diseases, Uludag University Faculty of Medicine, Bursa, Turkey.
Background: End-stage renal disease (ESRD) patients frequently experience protein-energy wasting (PEW), which increases their morbidity and mortality rates.
Objective: This study explores the effects of nutritional status and pulmonary function on the short- and long-term mortality of ESRD patients undergoing hemodialysis.
Materials And Methods: 67 consecutive ESRD patients on maintenance hemodialysis were included in the study.
J Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
Objectives: The increasing prevalence of obesity underscores the need to explore its impact on assisted reproductive technology (ART) outcomes. This study aims to evaluate the association between visceral fat area (VFA), measured by bioelectrical impedance analysis (BIA), and pregnancy outcomes following frozen embryo transfer (FET).
Methods: In this retrospective clinical study, the data of 1,510 patients who underwent FET between April 2022 and April 2023 were analyzed.
Adv Mater
January 2025
College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Sodium-based rechargeable batteries are some of the most promising candidates for electric energy storage with abundant sodium reserves, particularly, sodium-based dual-ion batteries (SDIBs) perform advantages in high work voltage (≈5.0 V), high-power density, and potentially low cost. However, irreversible electrolyte decomposition and co-intercalation of solvent molecules at the electrode interface under a high charge state are blocking their development.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!