Mutations in the PRKCSH, SEC63 and LRP5 genes cause autosomal dominant polycystic liver disease (ADPLD). The proteins products of PRKCSH (alias GIIB) and SEC63 function in protein quality control and processing in the endoplasmic reticulum (ER), while LRP5 is implicated in Wnt/β-catenin signaling. To identify common denominators in the PLD pathogenesis, we mapped the PLD interactome by affinity proteomics, employing both HEK293T cells and H69 cholangiocytes. Identification of known complex members, such as glucosidase IIA (GIIA) for PRKCSH, and SEC61A1 and SEC61B for SEC63, confirmed the specificity of the analysis. GANAB, encoding GIIA, was very recently identified as an ADPLD gene. The presence of GIIA in the LRP5 complex pinpoints a potential functional connection with PRKCSH. Interestingly, all three PLD-associated protein complexes included filamin A (FLNA), a multifunctional protein described to play a role in ciliogenesis as well as canonical Wnt signalling. As ciliary dysfunction may also contribute to hereditary liver cyst formation, we evaluated the requirement of PRKCSH and SEC63 for ciliogenesis and Wnt signaling. By CRISPR/Cas9 induced knockdown of both ADPLD genes in HEK293T cells and H69 cholangiocytes, we identified that their depletion results in defective ciliogenesis. However, only H69 knockouts displayed reduced Wnt3a activation. Our results suggest that loss of PRKCSH and SEC63 leads to general defects in ciliogenesis, while quenching of the Wnt signaling cascade is cholangiocyte-restricted. Interactions of all three PLD-associated protein complexes with FLNA may mark a common link between the ADPLD proteins and the cystogenic processes driving this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddx308 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Exploration of molecular markers is an ongoing focus in the field of bladder cancer research. Based on data from public databases, was identified as upregulated in bladder urothelial carcinoma (BLCA); however, its exact function and regulatory mechanism in this context remain unclear. To investigate the clinical implications of , we examined its levels in 90 BLCA and adjoining normal tissue samples.
View Article and Find Full Text PDFExp Ther Med
February 2025
Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan.
Periodontal disease is recognized as a chronic multifactorial inflammatory condition initiated by dysbiosis within subgingival plaque biofilms. Antimicrobial peptides exhibit a wide spectrum of antimicrobial action, and thus, provide one of the first lines of host defense against oral pathogens. Aged garlic extract (AGE) is effective for preventing the progression of periodontal disease.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Skin Disease Research Institute, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310058, China.
Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!