Our understanding of muscle glycosylation to date has derived from studies in mouse models and a limited number of human lectin histochemistry studies. As various therapeutic approaches aimed at treating patients with muscular dystrophies are being translated from rodent models to human, it is critical to better understand human muscle glycosylation and relevant disease-specific differences between healthy and dystrophic muscle. Here, we report the first quantitative characterization of human muscle glycosylation, and identify differentiation- and disease-specific differences in human muscle glycosylation. Utilizing a panel of 13 lectins with varying glycan specificities, we surveyed lectin binding to primary and immortalized myoblasts and myotubes from healthy and dystrophic sources. Following differentiation of primary and immortalized healthy human muscle cells, we observed increased binding of Narcissus pseudonarcissus agglutinin (NPA), PNA, MAA-II and WFA to myotubes compared to myoblasts. Following differentiation of immortalized healthy and dystrophic human muscle cells, we observed disease-specific differences in binding of NPA, Jac and Tricosanthes japonica agglutinin-I (TJA-I) to differentiated myotubes. We also observed differentiation- and disease-specific differences in binding of NPA, Jac, PNA, TJA-I and WFA to glycoprotein receptors in muscle cells. Additionally, Jac, PNA and WFA precipitated functionally glycosylated α-DG, that bound laminin, while NPA and TJA-I did not. Lectin histochemistry of healthy and dystrophic human muscle sections identified disease-specific differences in binding of O-glycan and sialic acid-specific lectins between healthy and dystrophic muscle. These results indicate that specific and discrete changes in glycosylation occur following differentiation, and identify specific lectins as potential biomarkers sensitive to changes in healthy human muscle glycosylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283322 | PMC |
http://dx.doi.org/10.1093/glycob/cwx073 | DOI Listing |
BMC Med Res Methodol
January 2025
Medical Spinal Research Unit, Spine Centre of Southern Denmark, University Hospital of Southern Denmark, Kolding, Denmark.
Background: Spinal pain affects up to 30% of school-age children and can interfere with various aspects of daily life, such as school attendance, physical function, and social life. Current assessment tools often rely on parental reporting which limits our understanding of how each child is affected by their pain. This study aimed to address this gap by developing MySpineData-Kids ("MiRD-Kids"), a tailored patient-reported questionnaire focusing on children with spinal pain in secondary care (Danish hospital setting).
View Article and Find Full Text PDFEat Weight Disord
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Nanbaixiang Street, Wenzhou, 325035, Zhejiang, China.
Purpose: The weight-adjusted waist index (WWI) is a novel anthropometric measure. WWI is linked to reduced muscle mass and strength; however, its efficacy for assessing sarcopenia and predicting adverse outcomes has yet to be validated. This study compared and examined the relationship between sarcopenia and WWI across different diagnostic criteria and aimed to evaluate its potential as a predictor of sarcopenia and all-cause mortality.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.
View Article and Find Full Text PDFClinics (Sao Paulo)
January 2025
Posgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil. Electronic address:
Introduction: People Living with Human Immunodeficiency Virus (PLHIV) appear to be at a higher risk of developing sarcopenia. Various factors seem to influence the risk of sarcopenia, and its prevalence may differ depending on the screening tool used. This study aimed to (i) Screen the risk of sarcopenia in PLHIV using the SARC-F and SARCCalf and identify associated factors; (ii) Analyze the agreement between the instruments in PLHIV.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!