A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing. | LitMetric

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing.

Materials (Basel)

Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Free State, Private Bag X20539, Bloemfontein 9300, South Africa.

Published: October 2017

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666960PMC
http://dx.doi.org/10.3390/ma10101154DOI Listing

Publication Analysis

Top Keywords

laser powder
8
powder bed
8
bed fusion
8
process parameters
8
situ alloyed
8
mechanical properties
8
ti6al4v eli
8
ti6al4v
6
functionalization biomedical
4
biomedical ti6al4v
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!