The nephron segments in the inner medulla are part of the urine concentrating mechanism. Depending on the diuretic state, they are facing a large range of extracellular osmolality. We investigated whether water homeostasis affects tubular transport and permeability properties in inner medullary descending thin limb (IMdTL) and ascending thin limb (IMaTL). Three experimental groups of rats under different diuretic states were investigated on metabolic cages: waterload, furosemide-induced diuresis, and control (antidiuresis). Urine production and osmolalities reflected the 3-day treatment. To functionally investigate tubular epithelial properties, we performed experiments in freshly isolated inner medullary thin limbs from these animals. Tubular segments were acutely dissected and investigated for trans- and paracellular properties by in vitro perfusion and electrophysiological analysis. IMdTL and IMaTL were distinguished by morphological criteria. We confirmed absence of transepithelial electrogenic transport in thin limbs. Although diffusion potential measurements showed no differences between treatments in IMdTLs, we observed increased paracellular cation selectivity under waterload in IMaTLs. NaCl diffusion potential was -5.64 ± 1.93 mV under waterload, -1.99 ± 1.72 mV under furosemide-induced diuresis, and 0.27 ± 0.40 mV under control. The corresponding permeability ratio P was 1.53 ± 0.21 (waterload), 1.22 ± 0.18 (furosemide-induced diuresis), and 0.99 ± 0.02 (control), respectively. Claudins are main constituents of the tight junction responsible for paracellular selectivity; however, immunofluorescence did not show qualitative differences in claudin 4, 10, and 16 localization. Our results show that IMaTLs change tight junction properties in response to diuretic state to allow adaptation of NaCl reabsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00419.2017DOI Listing

Publication Analysis

Top Keywords

diuretic state
12
thin limb
12
furosemide-induced diuresis
12
ascending thin
8
inner medullary
8
thin limbs
8
diffusion potential
8
tight junction
8
thin
5
diuretic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!