Protein enzymes are the main catalysts in the crowded and complex cellular interior, but their activity is almost always studied in dilute buffered solutions. Studies that attempt to recreate the cellular interior in vitro often utilize synthetic polymers as crowding agents. Here, we report the effects of the synthetic polymer cosolutes Ficoll, dextran, and polyvinylpyrrolidone, and their respective monomers, sucrose, glucose, and 1-ethyl-2-pyrrolidone, on the activity of the 18-kDa monomeric enzyme, Escherichia coli dihydrofolate reductase. At low concentrations, reductase activity increases relative to buffer and monomers, suggesting a macromolecular effect. However, the effect decreases at higher concentrations, approaching, and, in some cases, falling below buffer values. We also assessed activity in terms of volume occupancy, viscosity, and the overlap concentration (where polymers form an interwoven mesh). The trends vary with polymer family, but changes in activity are within threefold of buffer values. We also compiled and analyzed results from previous studies and conclude that alterations of steady-state enzyme kinetics in solutions crowded with synthetic polymers are idiosyncratic with respect to the crowding agent and enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699487PMC
http://dx.doi.org/10.1002/pro.3316DOI Listing

Publication Analysis

Top Keywords

dihydrofolate reductase
8
reductase activity
8
cellular interior
8
synthetic polymers
8
buffer values
8
activity
6
large cosolutes
4
cosolutes small
4
small cosolutes
4
cosolutes dihydrofolate
4

Similar Publications

Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Mitochondrial YME1L1 governs unoccupied protein translocase channels.

Nat Cell Biol

January 2025

Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60.

View Article and Find Full Text PDF

Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).

View Article and Find Full Text PDF

Synthesis, X-ray, antioxidant, in-vitro biological & in-silico docking studies of novel organoselenides: Promising colorectal cancer inhibitors.

Bioorg Chem

January 2025

Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India. Electronic address:

A series of multi-target organoselenides 3a-h has been synthesized with the advantages of a simple operation, and good yields of 66-89 % escorted by mechanistic enlightenment. The compounds 3b, 3c continued to exist as orthorhombic and trigonal, whereas 3d exist as monoclinic confirmed by the X-ray crystallography. Organoselenides 3c and 3f displayed the highest % radical scavenging potential with % inhibition of 98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!