Stress and misfolded proteins result to dysfunction in the cell, often leading to neurodegenerative diseases and aging. Misfolded proteins form toxic aggregates that threaten cell's stability and normal functions. In order to restore its homeostasis, the cell activates the UPR system. Leading role in the restoration play the molecular chaperones which target the misfolded proteins with the purpose of either helping them to unfold and refold to their natural state or lead them degradation. This paper aims to present some of the most known molecular chaperones and their relation with diseases associated to protein misfolding and neurodegeneration, as well as the role of chaperones in proteostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-57379-3_20 | DOI Listing |
Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
CLN2 and CLN3 diseases, the most common types of Batten disease (also known as neuronal ceroid lipofuscinosis), are childhood dementias associated with progressive loss of speech, language and feeding skills. Here we delineate speech, language, non-verbal communication and feeding phenotypes in 33 individuals (19 females) with a median age of 9.5 years (range 3-28 years); 16 had CLN2 and 17 CLN3 disease; 8/15 (53%) participants with CLN2 and 8/17 (47%) participants with CLN3 disease had speech and language impairments prior to genetic diagnosis.
View Article and Find Full Text PDFCrit Rev Oncog
January 2025
Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410, Andhra Pradesh, India.
The heat shock protein 90 kDa (HSP90) is highly conserved across diverse species, including humans, and upregulated in various cancers. As a result, it has been identified as a promising target for advancing anticancer medicine. The introduction of combinatorial chemistry in drug discovery has emphasized the need to develop new technologies in screening, designing, decoding, synthesizing, and screening combinatorial drug libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!