A reference material of a PM-like atmospheric dust material has been prepared using a newly developed method. It is intended to certify values for the mass fraction of SO, NO, Cl (anions) and Na, K, NH, Ca, Mg (cations) in this material. A successful route for the preparation of the candidate reference material is described alongside with two alternative approaches that were abandoned. First, a PM-like suspension was allowed to stand for 72 h. Next, 90% of the volume was siphoned off. The suspension was spiked with appropriate levels of the desired ions just prior to drop-wise shock-freezing in liquid nitrogen. Finally, freeze drying of the resulting ice kernels took place. In using this approach, it was possible to produce about 500 g of PM-like material with appropriate characteristics. Fine dust in 150-mg portions was filled into vials under an inert atmosphere. The final candidate material approaches the EN12341 standard of a PM-material containing the ions mentioned in Directive 2008/50/EC of the European Union. The material should be analysed using the CEN/TR 16269:2011 method for anions and cations in PM collected on filters. The method described here is a relatively rapid means to obtain large quantities of PM. With access to smaller freeze dryers, still 5 to 10 g per freeze-drying cycle can be obtained. Access to such quantities of PM-like material could potentially be used for different kinds of experiments when performing research in this field. Graphical abstract The novelty of the method lies in transformation of a suspension with fine particulate matter to a homogeneous and stable powder with characteristics similar to air-sampled PM. The high material yield in a relatively short time is a distinct advantage in comparison with collection of air-sampled PM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717123 | PMC |
http://dx.doi.org/10.1007/s00216-017-0670-6 | DOI Listing |
BMC Oral Health
January 2025
Conservative Dentistry Department, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.
Background: This study aimed to assess the influence of different pretreatment protocols and antioxidants application on the shear bond strength (SBS) of universal adhesive to sound (SoD) and caries-induced dentin (CID).
Methods: One hundred and twenty posterior teeth had their occlusal enamel removed, then the specimens were divided into two main groups according to dentin substrates; SoD and CID, three subgroups according to pretreatments protocols control (no pretreatment), NaOCl-treated, and Er, Cr:YSGG-treated and two divisions according to antioxidant application (with and without sodium ascorbate (SA) application). All-Bond Universal (ABU) universal adhesives was applied in self-etch (SE) mode then resin composite discs were built.
BMC Oral Health
January 2025
Professor of Conservative Dentistry, Faculty of Dentistry, Cairo University, Giza, Egypt.
Background: Minimally invasive dentistry is now becoming the forefront of restorative dentistry, involving less traumatic treatment protocols, conservation of tooth structure and surrounding tissues, enhancing the long-term survivability of treated teeth, and improving the overall quality of life for patients.
Objective: The current case report was conducted to evaluate acquiring deep subgingival interproximal carious lesions by the mean of thermacut bur gingivectomy, in terms of patient satisfaction through pain evaluation, Bleeding on Probing, Pocket Depth, Crestal Bone Level evaluation, and restoration evaluation using modified USPHS criteria.
Material And Methods: A patient with a deep proximal cavity in the posterior tooth was thoroughly examined and underwent Thermacut Bur Gingivectomy (TBG) after caries removal followed by direct resin composite restoration of the prepared cavity.
J Assoc Res Otolaryngol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).
Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).
Acad Radiol
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:
Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.
Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.
Diagn Microbiol Infect Dis
December 2024
Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens with limited treatment options due to resistance to multiple antibiotic classes. This study aimed to evaluate the in vitro activity of omadacycline and comparator antibiotics against rapidly growing mycobacteria (RGM) clinical isolates. Minimum inhibitory concentration (MIC) evaluation of RGM clinical isolates was performed by two independent laboratories (EU and Japan).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!