(L.) Maton, or small cardamom referred as 'queen of spices', is a perennial herbaceous rhizomatous monocot of the family Zingiberaceae. Cardamom seeds and fruits are the economically significant parts and effectively used as a traditional medicine, food additive and flavoring agent. In the present study, using Ion Proton next generation sequencing technology we performed the small RNA sequencing, conserved and novel miRNA predictions of a wild and five cultivar genotypes of cardamom. Small RNA sequencing generated a total of 5,451,328 and 2,756,250 raw reads for wild and cultivar cardamom respectively. The raw data was submitted to SRA database of NCBI under the accession numbers and SRX2273863 (wild) and SRX2273862 (cultivars). The raw reads were quality filtered and predicted conserved and novel miRNAs for wild and cultivar cardamom. The predicted miRNAs, miRNA-targets and functional annotations might provide valuable insights into differences between wild progenitor and cultivated cardamom.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604955 | PMC |
http://dx.doi.org/10.1016/j.dib.2017.08.037 | DOI Listing |
Folia Morphol (Warsz)
January 2025
Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, Sofia, Bulgaria.
Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFUnlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.
View Article and Find Full Text PDFUnlabelled: Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known.
View Article and Find Full Text PDFTranscription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!