With changes to cochlear implant candidacy and improvements in surgical technique, there is a need for accurate intraoperative assessment of low-frequency hearing thresholds during cochlear implantation. In electrocochleography, onset compound action potentials (CAPs) typically allow estimation of auditory threshold for frequencies above 1 kHz, but they are less accurate at lower frequencies. Auditory nerve neurophonic (ANN) waveforms, on the other hand, may overcome this limitation by allowing phase-locked neural activity to be tracked during a prolonged low-frequency stimulus rather than just at its onset (Henry, 1995). Lichtenhan et al. (2013) have used their auditory nerve overlapped waveform (ANOW) technique to measure these potentials from the round windows of cats and guinea pigs, and reported that in guinea pigs these potentials originate in the cochlear apex for stimuli below 70 dB SPL (Lichtenhan et al., 2014). Human intraoperative round window neurophonic measurements have been reported by Choudhury et al. (2012). We have done the same in hearing impaired awake participants, and present here the results of a pilot study in which we recorded responses evoked by 360, 525, and 725 Hz tone bursts from the cochlear promontory of one participant. We also present a modification to the existing measurement technique which halves recording time, extracting the auditory neurophonic by recording a single averaged waveform, and then subtracting from it a 180° group-delayed version of itself, rather than using alternating condensation and rarefaction sound stimuli. We cannot conclude that the waveforms we measured were purely neural responses originating from the apex of the cochlea: as with all neurophonic measurement procedures, the neural responses of interest cannot be separated from higher harmonics of the cochlear microphonic without forward masking, regardless of electrode location, stimuli or post-processing algorithm. In conclusion, the extraction of putative neurophonic waveforms can easily be incorporated into existing electrocochleographic measurement paradigms, but at this stage such measurements should be interpreted with caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609548PMC
http://dx.doi.org/10.3389/fnins.2017.00472DOI Listing

Publication Analysis

Top Keywords

neurophonic measurements
8
auditory nerve
8
guinea pigs
8
neural responses
8
neurophonic
6
cochlear
5
putative auditory-evoked
4
auditory-evoked neurophonic
4
measurements novel
4
novel signal
4

Similar Publications

Improving Real-Time Feedback During Cochlear Implantation: The Auditory Nerve Neurophonic/Cochlear Microphonic Ratio.

Ear Hear

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

Objectives: Real-time monitoring of cochlear function to predict the loss of residual hearing after cochlear implantation is now possible. Current approaches monitor the cochlear microphonic (CM) during implantation from the electrode at the tip of the implant. A drop in CM response of >30% is associated with poorer hearing outcomes.

View Article and Find Full Text PDF

Objectives: Electrocochleography (ECochG) appears to offer the most accurate prediction of post-cochlear implant hearing outcomes. This may be related to its capacity to interrogate the health of underlying cochlear tissue. The four major components of ECochG (cochlear microphonic [CM], summating potential [SP], compound action potential [CAP], and auditory nerve neurophonic [ANN]) are generated by different cochlear tissue components.

View Article and Find Full Text PDF

Objectives: The underlying state of cochlear and neural tissue function is known to affect postoperative speech perception following cochlear implantation. The ability to assess these tissues in patients can be performed using intracochlear electrocochleography (IC ECochG). One component of ECochG is the summating potential (SP) that appears to be generated by multiple cochlear tissues.

View Article and Find Full Text PDF

Objectives: Less traumatic intracochlear electrode design and the introduction of the soft surgery technique allow for the preservation of low-frequency acoustic hearing in many cochlear implant (CI) users. Recently, new electrophysiologic methods have also been developed that allow acoustically evoked peripheral responses to be measured in vivo from an intracochlear electrode. These recordings provide clues to the status of peripheral auditory structures.

View Article and Find Full Text PDF

Objective: To investigate the electrophysiology of the cochlear summating potential (SP) in patients with Meniere's disease (MD). Although long considered a purely hair cell potential, recent studies show a neural contribution to the SP. Patients with MD have an enhanced SP compared to those without the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!