Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MRC-5 represents the most frequent human diploid cells (HDCs)-type cell substrate in the production of human viral vaccines. However, early-passage MRC-5 is diminishing and, due to both technical and ethical issues, it is extremely difficult to derive novel HDCs from fetal lung tissues, which are the common sources of HDCs. Our previous studies suggested that human umbilical cord may represent an alternative but convenient source of new HDCs. Here, we established a three-tiered cell banking system of a hUC-MSC line, designated previously as Cell Collection and Research Center-1 (CCRC-1). The full characterization indicated that the banked CCRC-1 cells were free from adventitious agents and remained non-tumorigenic. The CCRC-1 cells sustained its rapid proliferation even at passage 30 and were susceptible to the infection of a wide spectrum of viruses. Interestingly, the CCRC-1 cells showed much higher production of EV71 or Rubella viruses than MRC-5 and Vero cells when growing in serum-free medium. More importantly, the EV71 vaccine produced from CCRC-1 cells induced immunogenicity while eliciting no detectable toxicities in the tested mice. Collectively, these studies further supported that CCRC-1, and likely other hUC-MSCs as well, may serve as novel, safe and high-yielding HDCs for the production of human viral vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624879 | PMC |
http://dx.doi.org/10.1038/s41598-017-11997-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!