A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic analysis reveals differentially expressed genes and a unique apoptosis pathway in channel catfish ovary cells after infection with the channel catfish virus. | LitMetric

Transcriptomic analysis reveals differentially expressed genes and a unique apoptosis pathway in channel catfish ovary cells after infection with the channel catfish virus.

Fish Shellfish Immunol

Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China. Electronic address:

Published: December 2017

The channel catfish virus (CCV) can cause lethal hemorrhagic infection in juvenile channel catfish, thereby resulting in a huge economic loss to the fish industry. The genome of the CCV has been fully sequenced, and its prevalence is well documented. However, less is known about the molecular mechanisms and pathogenesis of the CCV. Herein, the channel catfish ovary cells (CCO) were infected with CCV and their transcriptomic sketches were analyzed using an RNA sequencing technique. In total, 72,686,438 clean reads were obtained from 73,231,128 sequence reads, which were further grouped into 747,168 contigs. These contigs were assembled into 49,119 unigenes, of which 20,912 and 18,333 unigenes were found in Nr and SwissProt databases and matched 15,911 and 14,625 distinctive proteins, respectively. From these, 3641 differentially expressed genes (DEGs), comprising 260 up-regulated and 3381 down-regulated genes, were found compared with the control (non-infected) cells. For verification, 16 DEGs were analyzed using qRT-PCR. The analysis of the DEGs and their related cellular signaling pathways revealed a substantial number of DEGs that were involved in the apoptosis pathway induced by CCV infection. The apoptosis pathways were further elucidated using standard apoptosis assays. The results showed that CCV could induce extrinsic apoptosis pathway (instead of a mitochondrial intrinsic apoptosis pathway) in CCO cells. This study helps our understanding of the pathogenesis of CCV and contributes to the prevention of CCV infection in channel catfish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2017.09.070DOI Listing

Publication Analysis

Top Keywords

channel catfish
24
apoptosis pathway
16
differentially expressed
8
expressed genes
8
catfish ovary
8
ovary cells
8
infection channel
8
catfish virus
8
ccv
8
pathogenesis ccv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!