Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities.

Vet Parasitol

Wageningen Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands; Farm Technology Group, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands. Electronic address:

Published: October 2017

AI Article Synopsis

  • The poultry red mite, Dermanyssus gallinae, is a major pest affecting egg-laying hens worldwide, necessitating better pest control methods.
  • A new model has been developed to forecast the population dynamics of these mites in hen facilities, taking into account factors like temperature and flock age.
  • This dynamic adaptive model (DAP) can help farmers implement advanced Integrated Pest Management (IPM) strategies by predicting treatment effects and accommodating variabilities in different conditions.

Article Abstract

The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2017.07.027DOI Listing

Publication Analysis

Top Keywords

laying hen
20
hen facilities
20
population dynamics
16
integrated pest
12
pest management
12
gallinae laying
12
dap model
12
gallinae
9
development model
8
model forecasting
8

Similar Publications

Background: Local hen layers play a crucial role in egg production and the poultry industry. Optimizing their performance, egg quality, and overall health is of paramount importance.

Aim: This research aims to examine the effects of different feed forms on gut bacteria and subsequent effects on productivity, egg quality, and intestinal morphology in indigenous laying hens.

View Article and Find Full Text PDF

Transcriptomic insight into the underlying mechanism of induced molting on reproductive remodeling, performance and egg quality in laying hen.

Poult Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

This study aimed to clarify the reproductive remodeling mechanism in enhancing production performance and egg quality during the fasting-induced molting process of laying hens. A total of two-hundred and forty 380-days-old Jingfen No. 6 laying hens, with an average laying rate of 78% were divided into four replicates, with 60 hens in each replicate to receive a four-stage molt induction experiment.

View Article and Find Full Text PDF

Cross-species regulatory network analysis identifies FOXO1 as a driver of ovarian follicular recruitment.

Sci Rep

December 2024

Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.

The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.

View Article and Find Full Text PDF

Culture collection containing 1,240 isolates from healthy Canadian laying hens.

Microbiol Resour Announc

December 2024

Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montréal, Québec, Canada.

The pure culture of prokaryotes is essential to understanding their physiology. To facilitate research into better understanding the roles of individual bacteria in the gastric microbiome in chickens, we have established a culture collection of 1,240 isolates from fecal samples collected from healthy laying hens from across Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!