Background: Estrogen deficiency is thought to be responsible for the higher frequency of aneurysmal subarachnoid hemorrhage in post- than premenopausal women. Estrogen replacement therapy appears to reduce this risk but is associated with significant side effects. We tested our hypothesis that bazedoxifene, a clinically used selective estrogen receptor (ER) modulator with fewer estrogenic side effects, reduces cerebral aneurysm rupture in a new model of ovariectomized rats.
Methods: Ten-week-old female Sprague-Dawley rats were subjected to ovariectomy, hemodynamic changes, and hypertension to induce aneurysms (ovariectomized aneurysm rats) and treated with vehicle or with 0.3 or 1.0 mg/kg/day bazedoxifene. They were compared with sham-ovariectomized rats subjected to hypertension and hemodynamic changes (HT rats). The vasoprotective effects of bazedoxifene and the mechanisms underlying its efficacy were analyzed.
Results: During 12 weeks of observation, the incidence of aneurysm rupture was 52% in ovariectomized rats. With no effect on the blood pressure, treatment with 0.3 or 1.0 mg/kg/day bazedoxifene lowered this rate to 11 and 17%, almost the same as in HT rats (17%). In ovariectomized rats, the mRNA level of ERα, ERβ, and the tissue inhibitor of metalloproteinase-2 was downregulated in the cerebral artery prone to rupture at 5 weeks after aneurysm induction; the mRNA level of interleukin-1β and the matrix metalloproteinase-9 was upregulated. In HT rats, bazedoxifene restored the mRNA level of ERα and ERβ and decreased the level of interleukin-1β and matrix metalloproteinase-9. These findings suggest that bazedoxifene was protective against aneurysmal rupture by alleviating the vascular inflammation and degradation exacerbated by the decrease in ERα and ERβ.
Conclusions: Our observation that bazedoxifene decreased the incidence of aneurysmal rupture in ovariectomized rats warrants further studies to validate this response in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625708 | PMC |
http://dx.doi.org/10.1186/s12974-017-0966-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!