Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A series of novel sulphonylureas/guanidine derivatives was designed, synthesized, and evaluated for the treatment of diabetes mellitus. In this study, the designed compounds were docked with AKR1C1 complexes by using glide docking program and docking calculations were performed to predict the binding affinity of the designed compounds with the binding pocket of protein 4YVP and QikProp program was used to predict the ADME/T properties of the analogues.
Methods: All the targeted derivatives were synthesized and purified by recrystallization. Synthesized compounds were characterized by various physicochemical and various spectroscopic techniques like melting point, thin layer chromatography, infrared spectroscopy (KBr pellets), mass spectroscopy(m/z), 1H NMR (DMSO-d6), and 13C NMR. The synthesized compounds were further studied for biological evolution by alloxan (150 mg/dl, intraperitonial) induced diabetic rat model for in-vivo studies.
Result: Among all the synthesized derivatives, 5c and 5d were most potent as per binding energy. Compound 5i have shown a better plasma glucose reduction compared to glibenclamide. Hence, it will be further used as a lead compound to develop a more such kind of agent.
Conclusion: The docking study revealed that in all designed sulphonylureas/ guanidine series of compounds 5c and 5d were found to be most potent compounds as per the binding energy compared to glibenclamide. With the help of detailed study of in vivo biological activity, we observed that compound 5i gives better result compared to glibenclamide as standard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1570163814666171002102904 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!