Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: antioxidants supplementation improves sperm quality, but few trials have analyzed the effects on sperm DNA fragmentation (SDF). This study compares the effectiveness of SOD-based antioxidant supplementation plus hydroxytyrosol and carnosol in reducing SDF with other antioxidants without SOD, hydroxytyrosol, and carnosol.
Materials And Methods: men with high SDF at baseline were selected in our clinical database. The patients taken into account had a 2-month control. SDF was measured by Sperm Chromatin Dispersion test (SCD). Untreated men were used as a control group. The remaining subjects received some oral antioxidant supplements (12 different combinations of both hydrophilic and lipophilic antioxidants), with some of them receiving nutritional support with a SOD-based antioxidant supplementation plus hydroxytyrosol and carnosol.
Results: 118 men were selected for a retrospective study. Mean age 39.3 ± 5.4 years. Fifteen had no treatment, 55 were treated with a SOD-based antioxidant supplementation plus hydroxytyrosol and carnosol, and 48 took some antioxidant supplements for 2 months. Clinically, variations of at least 10% in baseline values of classic semen parameters and sperm DNA fragmentation were taken into consideration. Classic seminal parameters did not vary significantly in the three groups, with the exception of viability (p = 0.001). We assessed which of the active substances (no. 19) in different formulations were associated with variations in SDF. In the multivariable analysis of the 7 active substances that passed the univariable analysis, only the SOD molecule appeared to be linked to an improvement in SDF (< 0.0001). In detail, only one patient in the control group showed a spontaneous improvement in SDF (6%), compared to 16/48 (33%) of those taking various oral antioxidant supplements, and 31/55 (56%) of those taking a SOD-based antioxidant supplementation plus hydroxytyrosol and carnosol.
Conclusions: SOD-based antioxidant supplementation plus hydroxytyrosol and carnosol seems to provide a better chance of improving sperm DNA integrity than other classical antioxidant molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4081/aiua.2017.3.212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!