At high exposure levels ionizing radiation is a carcinogen. Little is known about how human stem cells, which are known to contribute to tumorigenesis, respond to prolonged radiation exposures. We studied formation of DNA double strand breaks, accessed as γH2AX and 53BP1 foci, in human mesenchymal stem cells (MSCs) exposed to either acute (5400 mGy/h) or prolonged (270 mGy/h) X-irradiation. We show a linear γH2AX and 53BP1 dose response for acute exposures. In contrast, prolonged exposure resulted in a dose-response curve that had an initial linear portion followed by a plateau. Analysis of Rad51 foci, as a marker of homologous recombination, in cells exposed to prolonged irradiation revealed a threshold in a dose response. Using Ki67 as a marker of proliferating cells, we show no difference in the γH2AX distribution in proliferating vs. quiescent cells. However, Rad51 foci were found almost exclusively in proliferating cells. Concurrent increases in the fraction of S/G2 cells were detected in cells exposed to prolonged irradiation by scoring CENPF-positive cells. Our data suggest that prolonged exposure of MSCs to ionizing radiation leads to cell cycle redistribution and associated activation of homologous recombination. Also, proliferation status may significantly affect the biological outcome, since homologous repair is not activated in resting MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610005 | PMC |
http://dx.doi.org/10.18632/oncotarget.19203 | DOI Listing |
Int J Mol Sci
December 2024
College of Life Sciences, Hebei University, Baoding 071002, China.
Bovine herpesvirus 1 (BoHV-1) productive infection induces the generation of DNA double-strand breaks (DSBs), which may consequently lead to cell apoptosis. In response to DSBs, the DNA damage repair-related protein 53BP1 is recruited to the sites of DSBs, leading to the formation of 53BP1foci, which are crucial for the repair of damaged DNA and maintaining genomic integrity by repairing DSBs. In this study, we discovered that HMGA1 may play a significant role in counteracting virus infection-induced DNA damage, as the siRNA-mediated knockdown of HMGA1 protein expression or inhibition of HMGA1 activity by the chemical inhibitor Netropsin uniformly exacerbates the DNA damage induced by BoHV-1 productive infection.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
Background: Enumeration of residual DNA repair foci 24 hours or more after exposure to ionizing radiation (IR) is often used to assess the efficiency of DNA double-strand break repair. However, the relationship between the number of residual foci in irradiated cells and the radiation dose is still poorly understood. The aim of this work was to investigate the dose responses for residual DNA repair foci in normal human fibroblasts after X-ray exposure in the absorbed dose range from 0.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
Purpose: Terbium-149 is a short-lived α-particle emitter, potentially useful for tumor-targeted therapy. The aim of this study was to investigate terbium-149 in combination with the somatostatin receptor (SSTR) agonist DOTATATE and the SSTR antagonist DOTA-LM3. The radiopeptides were evaluated to compare their therapeutic efficacy in vitro and in vivo.
View Article and Find Full Text PDFJ Med Virol
January 2025
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.
View Article and Find Full Text PDFCurr Opin Cell Biol
December 2024
Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. Electronic address:
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!