MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response.

PLoS One

Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.

Published: October 2017

Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway presents an oscillatory pattern associated with intense DNA damage repair while for high damage there are no oscillations and either p53 concentration increases inducing apoptosis or the cell enters a senescence state. Apoptosis and senescence phenotypes seem to have compensatory functions in tissues and the microRNA 16-1 (miR-16) is involved in the regulation of the fate between both phenotypes in cancer cells. To investigate the regulation of cell fate we developed a logical model of the G1/S checkpoint in DNA damage response that takes into account different levels of damage and contemplates the influence of miR-16 through its positive feedback loop formed with p53 and Wip1. The model reproduces the observed cellular phenotypes in experiments: oscillatory (for low DNA damage) regulated by negative feedback loops involving mainly p53 and Mdm2 and apoptotic or senescent (for high DNA damage) regulated by the positive p53/Wip1/miR-16 feedback loop. We find good agreement between the level of DNA damage and the probability of the phenotype produced according to experiments. We also find that this positive feedback makes senescent and apoptotic phenotypes to be determined stochastically (bistable), however controlling the expression level of miR-16 allows the control of fate determination as observed experimentally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624635PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185794PLOS

Publication Analysis

Top Keywords

dna damage
32
cell fate
20
feedback loop
12
apoptosis senescence
12
damage
10
p53 wip1
8
cell
8
regulate cell
8
fate determination
8
dna
8

Similar Publications

Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.

View Article and Find Full Text PDF

The present systematic review aims to put together human population studies that include some relationship between genetic polymorphisms and genotoxicity as well as to evaluate the quality of the published studies induced by cigarette smoke exposure in vivo. The present systematic review was built according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Different genotoxicity assays were used by different authors, although the major goal was the genotoxicity assessment by means of micronucleus, comet, sister chromatid exchange, and chromosomal aberration assays.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!