Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites.

Soft Matter

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: October 2017

Herein we demonstrate the formation of a novel kind of Pickering emulsion that is stabilized by a Zr-based metal-organic framework (Zr-MOF) and graphene oxide (GO). It was found that the Zr-BDC-NO and GO solids assembling at the oil/water interface can effectively stabilize the oil droplets that are dispersed in the water phase. Such a Pickering emulsion offers a facile route for fabricating Zr-MOF/GO composite materials. After removing water and oil by freeze drying from Pickering emulsions, the Zr-MOF/GO composites were obtained and their morphologies, structures and interaction properties were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry, respectively. The influences of the concentration of GO and Zr-MOF on the emulsion microstructures and the properties of the MOF/GO composites were studied. Based on experimental results, the mechanisms for the emulsion formation by Zr-MOF and GO and the as-synthesized superstructures of the Zr-MOF/GO composite were proposed. It is expected that this facile and tunable route can be applied to the synthesis of different kinds of MOF-based or GO-based composite materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm01567dDOI Listing

Publication Analysis

Top Keywords

pickering emulsions
8
metal-organic framework
8
graphene oxide
8
mof/go composites
8
pickering emulsion
8
zr-mof/go composite
8
composite materials
8
electron microscopy
8
pickering
4
emulsions stabilized
4

Similar Publications

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

The prevalence of diet-related health issues has driven the demand for healthier food options, particularly those with reduced fat content. This systematic review evaluates the integration of sensory analysis in low-fat emulsion research, highlighting a significant gap in current practices. From an initial pool of 400 articles, 227 unique studies were screened, but only 15 (6.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

The aim of the present research was to evaluate the effect of Urtica dioica L. (nettle) essential oil (in the forms of Pickering nanoemulsion (NEO) and free (EO)) on microbial, chemical and sensory changes of pizza cheese stored at 4 °C for 12 days. For this purpose, Escherichia coli and Listeria monocytogenes were inoculated into pizza cheese.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!