Protein Phosphatase 2A (PP2A) enzymes counteract diverse kinase-driven oncogenic pathways and their function is frequently impaired in cancer. PP2A inhibition is indispensable for full transformation of human cells, but whether loss of PP2A is sufficient for tumorigenesis in vivo has remained elusive. Here, we describe spontaneous tumor development in knockout mice for Ppp2r5d, encoding the PP2A regulatory B56δ subunit. Several primary tumors were observed, most commonly, hematologic malignancies and hepatocellular carcinomas (HCCs). Targeted immunoblot and immunohistochemistry analysis of the HCCs revealed heterogeneous activation of diverse oncogenic pathways known to be suppressed by PP2A-B56. RNA sequencing analysis unveiled, however, a common role for oncogenic c-Myc activation in the HCCs, independently underscored by c-Myc Ser62 hyperphosphorylation. Upstream of c-Myc, GSK-3β Ser9 hyperphosphorylation occurred both in the HCCs and non-cancerous B56δ-null livers. Thus, uncontrolled c-Myc activity due to B56δ-driven GSK-3β inactivation is the likely tumor predisposing factor. Our data provide the first compelling mouse genetics evidence sustaining the tumor suppressive activity of a single PP2A holoenzyme, constituting the final missing incentive for full clinical development of PP2A as cancer biomarker and therapy target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/onc.2017.350 | DOI Listing |
J Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.
Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.
Maternal nutritional status plays a crucial role in embryonic development and has persistent effects on postnatal chicks. Vitamin C (VC) plays an important role in embryonic and postnatal development involved in nutri-epigenetics. The present study was conducted to investigate the effects of feeding (IOF) of VC on embryonic development, egg hatching time, and chick rectal temperature.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.
View Article and Find Full Text PDFCommun Biol
January 2025
National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!