A SNP uncoupling Mina expression from the TGFβ signaling pathway.

Immun Inflamm Dis

Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.

Published: March 2018

Introduction: Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated.

Methods: Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval.

Results: We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness.

Conclusions: Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818440PMC
http://dx.doi.org/10.1002/iid3.191DOI Listing

Publication Analysis

Top Keywords

mina expression
20
tgfβ signaling
12
signaling pathway
12
mina
10
expression tgfβ
8
mina protein
8
protein level
8
promoter/intron 1-region
8
1-region snps
8
expression
5

Similar Publications

Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research.

View Article and Find Full Text PDF

Background: Yttrium-90 FF-21101 (Y-FF-21101) is a radiopharmaceutical that targets P-cadherin as a therapy against solid tumors. A previously reported, first-in-human study determined that a dose of 25 mCi/m was safe, and a patient with clear cell carcinoma of the ovary achieved a complete response. In this article, the authors report the results of Y-FF-21101 treatment in an ovarian carcinoma expansion cohort and in patients with selected solid tumors who had known high P-cadherin expression.

View Article and Find Full Text PDF

Production and functional analysis of a phage displayed scFv recombinant antibody targeting EGFR/HER2 dimerization domain.

Protein Expr Purif

December 2024

Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Background: Tumor cells exploit epidermal growth factor receptor (EGFR) family to develop resistance against therapeutic antibodies, such as Herceptin. Upon ligand binding, dimerization between EGFR and HER2 is one of the most important causes of treatment failure in breast cancer and other cancers expressing EGFR and HER2. The aim of this study was to develop and evaluate the function of a human recombinant single-chain variable fragment (scFv) antibody against the dimerization domain of EGFR to inhibit its interaction with other members of the epidermal growth factor receptor family, especially HER2.

View Article and Find Full Text PDF

Pathway metrics accurately stratify T cells to their cells states.

BioData Min

December 2024

The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

Pathway analysis is a powerful approach for elucidating insights from gene expression data and associating such changes with cellular phenotypes. The overarching objective of pathway research is to identify critical molecular drivers within a cellular context and uncover novel signaling networks from groups of relevant biomolecules. In this work, we present PathSingle, a Python-based pathway analysis tool tailored for single-cell data analysis.

View Article and Find Full Text PDF

SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow.

Front Genet

December 2024

Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway.

An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!