Respiratory syncytial virus (RSV) is a major cause of respiratory morbidity and one of the main causes of hospitalisation in young children. While there is currently no licensed vaccine for RSV, a vaccine candidate for pregnant women is undergoing phase 3 trials. We developed a compartmental age-structured model for RSV transmission, validated using linked laboratory-confirmed RSV hospitalisation records for metropolitan Western Australia. We adapted the model to incorporate a maternal RSV vaccine, and estimated the expected reduction in RSV hospitalisations arising from such a program. The introduction of a vaccine was estimated to reduce RSV hospitalisations in Western Australia by 6-37% for 0-2month old children, and 30-46% for 3-5month old children, for a range of vaccine effectiveness levels. Our model shows that, provided a vaccine is demonstrated to extend protection against RSV disease beyond the first three months of life, a policy using a maternal RSV vaccine could be effective in reducing RSV hospitalisations in children up to six months of age, meeting the objective of a maternal vaccine in delaying an infant's first RSV infection to an age at which severe disease is less likely.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2017.09.043DOI Listing

Publication Analysis

Top Keywords

rsv
12
rsv vaccine
12
rsv hospitalisations
12
vaccine
9
maternal vaccine
8
vaccine rsv
8
western australia
8
maternal rsv
8
vaccine estimated
8
potential impact
4

Similar Publications

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Background: Several studies have evaluated different cell cycle synchronization methods to improve reprogramming efficiency aimed at wild species conservation. The six-banded armadillo is one of the wild mammals with significant ecological and biomedical interests but has not yet been evaluated for reprogramming purposes.

Objective: We investigated the effects in a time-dependent manner of serum starvation (SS; 0.

View Article and Find Full Text PDF

Small interfering RNAs generated from the terminal panhandle structure of negative-strand RNA virus promote viral infection.

PLoS Pathog

January 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.

View Article and Find Full Text PDF

Maternal immunisation against respiratory viruses provides protection in early life, but as antibodies wane, there can be a gap in coverage. This immunity gap might be filled by inducing pathogen-specific lung tissue-resident T cells (TRM). However, the neonatal mouse lung has a different inflammatory environment to the adult lung which affects T cell recruitment.

View Article and Find Full Text PDF

The phytochemical fingerprinting that add to the nutritional and nutraceutical value of the fruits during the ripening stages is beneficial for human consumption. Therefore, ripening-dependent changes in phytochemical content and antioxidant activities of mango (Mangifera indica L.) cultivar Dusehri at various ripening stages were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!