Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, <.0005, partial η = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O·kg·km) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609665PMC
http://dx.doi.org/10.70252/DEGE1246DOI Listing

Publication Analysis

Top Keywords

body weight
12
lower body
8
body positive
8
positive pressure
8
lbpp treadmill
8
treadmill running
8
running economy
8
running
6
body
5
treadmill
5

Similar Publications

Objective: Patient characteristics of Cushing's syndrome differ between countries and have not been assessed in the Australian dog population. This study describes signalment and distribution of adrenocorticotropic hormone (ACTH)-dependent hypercortisolism (ADH) and ACTH-independent hypercortisolism (AIH) in Australian dogs.

Animals: Two-hundred client-owned dogs that had endogenous ACTH concentrations measured by radioimmunoassay.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Background: At present, the existing internal medicine drug treatment can alleviate the high glucose toxicity of patients to a certain extent, to explore the efficacy of laparoscopic jejunoileal side to side anastomosis in the treatment of type 2 diabetes, the report is as follows.

Aim: To investigate the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes mellitus (T2DM).

Methods: We retrospectively analyzed the clinical data of 78 patients with T2DM who were treated jejunoileal lateral anastomosis.

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!