It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a way to determine causal orientations by making use of independence changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617646PMC
http://dx.doi.org/10.24963/ijcai.2017/187DOI Listing

Publication Analysis

Top Keywords

causal discovery
16
data sets
12
data
9
discovery nonstationary/heterogeneous
8
nonstationary/heterogeneous data
8
causal
7
data skeleton
4
skeleton estimation
4
estimation orientation
4
orientation determination
4

Similar Publications

COVID-19 vaccination is the most effective strategy for preventing severe disease and death. Inactivated vaccines are the most accessible type of COVID-19 vaccines in developing countries. Several studies, including work from our group, have demonstrated that the third dose (booster vaccination) of inactivated COVID-19 vaccine induces robust humoral and cellular immune responses.

View Article and Find Full Text PDF

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Structural Variant Analysis of Complex Karyotype Myelodysplastic Neoplasia Through Optical Genome Mapping.

Genes Chromosomes Cancer

January 2025

Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.

Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.

View Article and Find Full Text PDF

Novel transcripts of EMT driving the malignant transformation of oral submucous fibrosis.

Sci Rep

January 2025

Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.

Oral submucous fibrosis (OSF) is a chronic, progressive, and fibrotic condition of the oral mucosa that carries an elevated risk of malignant transformation. We aimed to identify and validate novel genes associated with the regulation of epithelial-to-mesenchymal transition (EMT) in OSF. Genes regulating EMT were identified through differential gene expression analysis, using a LogFC threshold of -1 and + 1 and a padj value < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!