Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

Ind Eng Chem Res

Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.

Published: September 2017

We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO and reforming of CH using concentrated radiation as the source of process heat. The 2 kW solar reactor prototype utilizes a cavity receiver enclosing a vertical AlO tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH reformed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617332PMC
http://dx.doi.org/10.1021/acs.iecr.7b02738DOI Listing

Publication Analysis

Top Keywords

ceria reduction
8
combined ceria
4
reduction methane
4
methane reforming
4
reforming solar-driven
4
solar-driven particle-transport
4
particle-transport reactor
4
reactor report
4
report experimental
4
experimental performance
4

Similar Publications

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Forming defect sites on catalyst supports and immobilizing precious metal atoms at these sites offers an efficient approach for preparing single-atom catalysts. In this study, we employed an Fe-Ce oxide solid solution (FC), which has surface oxygen that reduces more readily than that of ceria, to anchor Rh single atoms (Rh1). When utilized in the selective catalytic reduction of NO with CO (CO-SCR), Rh1/FC reduced at 500 °C- characterized by less oxidic Rh state induced by an oxygen-deficient coordination-exhibited superior activity and durability compared to Rh1/ceria and Rh1/FC reduced at 300 °C.

View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.

View Article and Find Full Text PDF

The water-gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear.

View Article and Find Full Text PDF

Facile Interfacial Reduction Suppresses Redox Chemical Expansion and Promotes the Polaronic to Ionic Transition in Mixed Conducting (Pr,Ce)O Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science & Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States.

Mixed ionic/electronic conductors (MIECs) are essential components of solid-state electrochemical devices, such as solid oxide fuel/electrolysis cells. For efficient performance, MIECs are typically nanostructured, to enhance the reaction kinetics. However, the effect of nanostructuring on MIEC chemo-mechanical coupling and transport properties, which also impact cell durability and efficiency, has not yet been well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!