A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination? | LitMetric

Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?

Comp Biochem Physiol C Toxicol Pharmacol

Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

Published: December 2017

Unlabelled: The degree to which marine invertebrate populations can tolerate extreme weather events, such as short-term exposure to high temperatures, and the underlying biochemical response mechanisms are not yet fully understood. Furthermore, scarce information is available on how marine organisms respond to the presence of pollutants after exposure to heat stress conditions. Therefore, the present study aimed to understand how the mussel Mytilus galloprovincialis responds to Hg pollution after pre-exposure to warming conditions. Mussels were exposed to control (17°C) and warming (21°C) conditions during 14days, followed by Hg contamination during 28days under different temperature regimes (17 and 21°C). The results obtained demonstrated significantly higher Hg concentrations in mussels under 17°C during the entire experiment than in organisms exposed to 21°C during the same period, which resulted in higher oxidative stress in mussels under control temperature. Significantly higher Hg concentrations were also observed in mussels pre-exposed to 21°C followed by a 17°C exposure comparing with organisms maintained the entire experiment at 21°C. These results may be explained by higher metabolic capacity in organisms exposed to 17°C after pre-exposure to 21°C that although induced antioxidant defences were not enough to prevent oxidative stress. No significant differences in terms of Hg concentration were found between mussels exposed to 17°C during the entire experiment and organisms pre-exposed to 21°C followed by a 17°C exposure, leading to similar oxidative stress levels in mussels exposed to both conditions. Therefore, our findings demonstrated that pre-exposure to warming conditions did not change mussels' accumulation and tolerance to Hg in comparison to Hg contaminated mussels maintained at control temperature. Furthermore, the present study indicate that organisms maintained under warming conditions for long periods may prevent the accumulation of pollutants by decreasing their metabolism which will limit cellular injuries.

Capsule: Mussels under warming conditions presented reduced metabolic capacity, resulting in lower Hg accumulation, which in turn prevented higher damages and, consequently, physiological impairments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2017.09.010DOI Listing

Publication Analysis

Top Keywords

warming conditions
20
pre-exposure warming
12
mussels exposed
12
entire experiment
12
oxidative stress
12
conditions
8
mytilus galloprovincialis
8
mussels
8
higher concentrations
8
17°c entire
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!