Resistance of mouse primary microglia and astrocytes to acrylonitrile-induced oxidative stress.

Neurotoxicology

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:

Published: December 2017

Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resin, nitrile, acrylic fibers, synthetic rubber, and acrylamide. ACN is considered a Group 2B possible carcinogen in humans and is known to cause gliomas in rats. These gliomas are predominantly composed of microglia and not astrocytes. Interestingly, ACN treatment does not cause gliomas in mice, suggesting that mouse astrocytes and microglia may be resistant to ACN. We investigated the effects of ACN treatment on primary mouse microglia and astrocytes to investigate their sensitivity to the chemical. Cell viability, ACN uptake, glutathione (GSH) levels and the expression of NF-E2-related factor 2 (Nrf2) were evaluated in primary mouse microglia and astrocytes following ACN treatment. Our results indicate that mouse glial cells are resistant to ACN-induced oxidative stress. Both cell types accumulated ACN; however, there was a minor effect of ACN on cell viability in astrocytes and microglia. Nrf2 and GSH levels were unchanged in ACN-treated as compared to the untreated cells. These observations suggest that primary mouse glial cells are resistant to ACN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2017.09.013DOI Listing

Publication Analysis

Top Keywords

microglia astrocytes
16
acn treatment
12
primary mouse
12
acn
10
oxidative stress
8
astrocytes microglia
8
resistant acn
8
mouse microglia
8
cell viability
8
gsh levels
8

Similar Publications

Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study we sought to identify acute effects of anti-Aβ antibody on immune responses.

View Article and Find Full Text PDF

A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

December 2024

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.

View Article and Find Full Text PDF

Objective: The 5xFAD mouse model of Alzheimer disease (AD) recapitulates amyloid-beta (Aβ) deposition and pronounced seizure susceptibility observed in patients with AD. Forty-hertz audiovisual stimulation is a noninvasive technique that entrains gamma neural oscillations and can reduce Aβ pathology and modulate glial expression in AD models. We hypothesized that 40-Hz sensory stimulation would improve seizure susceptibility in 5xFAD mice and this would be associated with reduction of plaques and modulation of glial phenotypes.

View Article and Find Full Text PDF

Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation.

J Inflamm Res

December 2024

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.

Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.

View Article and Find Full Text PDF

The free-living amoeba (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!