2-(3-Ethylthioureido)benzoic acid was prepared and characterized by electronic spectrum, elemental analysis, Fourier transform infrared spectroscopy, H nuclear magnetic resonance spectrum and mass spectrum. The produced ligand was applied for the preconcentrative of Fe, Co, Cu and Zn in aqueous samples by cloud point extraction methodology. Triton X-114 was used as extractant. Experimental parameters that may affect the extraction process were examined and optimized; such as pH, ligand and triton concentrations, type of diluting solvent, extraction temperature and ionic strength. The calibration curves were linear upto 500μgL for Fe, Cu and Zn and upto 200μgL for Co. The achieved detection limits were 1.5, 0.23, 0.71 and 0.35μgL for Fe, Co, Cu and Zn respectively. The accuracy was established by analysis of certified reference materials (Seronorm whole blood L2 and ZCS ZC85006 Tomato). The proposed procedure was used for preconcentration of these metal ions in water, biological and food samples prior to their determination by flame atomic absorption spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2017.09.003 | DOI Listing |
Data Brief
February 2025
North Carolina Agricultural and Technical State University, 1601 E Market St, Greensboro, NC 27411, United States.
Contemporary research in 3D object detection for autonomous driving primarily focuses on identifying standard entities like vehicles and pedestrians. However, the need for large, precisely labelled datasets limits the detection of specialized and less common objects, such as Emergency Medical Service (EMS) and law enforcement vehicles. To address this, we leveraged the Car Learning to Act (CARLA) simulator to generate and fairly distribute rare EMS vehicles, automatically labelling these objects in 3D point cloud data.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.
The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.
View Article and Find Full Text PDFUrban Inform
January 2025
IVL Swedish Environmental Research Institute LTD., PO Box 530 21, SE-400 14 Gothenburg, Sweden.
In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.
View Article and Find Full Text PDFWaste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!