A high concentration of DMSO activates caspase-1 by increasing the cell membrane permeability of potassium.

Cytotechnology

Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.

Published: February 2018

AI Article Synopsis

  • DMSO is widely used in labs and clinical settings due to its ability to dissolve in both water and organic solvents, allowing for treatment of various diseases.
  • High concentrations of DMSO trigger the secretion of the pro-inflammatory cytokine IL-1β in the THP-1 monocytic cell line, which requires activation of the caspase-1 enzyme.
  • Interestingly, while DMSO is known as a ROS scavenger, it actually promotes NLRP3 inflammasome formation through increased membrane permeability and potassium efflux, unveiling a new aspect of its biological activity that should be considered in research and medical applications.

Article Abstract

Dimethyl sulfoxide (DMSO) is widely used in the laboratory and in clinical situations because it is soluble in both aqueous and organic media and can be used to treat many types of diseases. Thus, it is meaningful to assess the comprehensive and in-depth biological activities of DMSO. Here, we showed that a high concentration of DMSO induced pro-inflammatory cytokine interleukin-1β (IL-1β) secretion from the monocytic cell line THP-1. DMSO-induced IL-1β secretion was dependent on intracellular caspase-1 activation. Further study revealed that the activation of caspase-1 by DMSO relied on NLRP3 inflammasome formation. It is generally accepted that the NLRP3 inflammasome is activated by reactive oxygen species generation or potassium efflux; however, the common NLRP3 inflammasome trigger remains controversial. Here, we showed that although DMSO is a ROS scavenger, this chemical increases membrane permeability and potassium efflux, and the formation of the NLRP3 inflammasome reflects the increased membrane permeability and potassium efflux induced by DMSO. The present study reveals a new characteristic of DMSO, which should be considered when using this chemical in either the laboratory or the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809660PMC
http://dx.doi.org/10.1007/s10616-017-0145-9DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
16
membrane permeability
12
permeability potassium
12
potassium efflux
12
high concentration
8
dmso
8
concentration dmso
8
il-1β secretion
8
dmso activates
4
activates caspase-1
4

Similar Publications

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Group 3 Innate Lymphoid Cells: A Potential Therapeutic Target for Steroid Resistant Asthma.

Clin Rev Allergy Immunol

December 2024

Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.

Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!