Aim: The primary objective of this study was (1) to evaluate the 5-year clinical outcome of regenerative periodontal therapy (RPT) using minimally invasive surgery and a collagen-enriched bovine-derived xenograft and (2) to identify predictors for clinical attachment level (CAL) gain and vertical radiographic bone (RB) gain.
Materials And Methods: Ninety-five non-smoking patients with ≤ 25% full-mouth plaque and bleeding presenting ≥ 6 months after initial periodontal therapy with ≥ 1 isolated interdental infrabony defect were recruited. Minimally invasive surgery (MIST or M-MIST) and a collagen-enriched bovine-derived xenograft were used in all patients. Patients were surgically treated by the same clinician and evaluated up to 5 years of follow-up. Multivariate analyses were used to identify predictors for CAL gain and RB gain.
Results: Before surgery, mean probing depth (PD) was 7.8 mm, CAL was 10.0 mm, and defect depth amounted to 5.2 mm. Seventy-one patients (33 men, 38 women, mean age 52) could be evaluated at 5 years. Mean PD reduction was 3.3 mm (SD 2.2), CAL gain was 3.0 mm (SD 2.1), and RB gain was 57% (SD 38). Forty-five percent showed ≥ 4 mm CAL gain, whereas 24% were considered failures (≤ 1 mm CAL gain). Forty-eight percent showed considerable RB gain (≥ 75%). Regression analyses showed that plaque was a significant predictor for CAL gain (p = 0.001) and RB gain (p = 0.005). Patients' compliance had a significant impact on RB gain (p < 0.001).
Conclusion: Only patients with perfect oral hygiene and excellent compliance should be considered for RPT. Especially, the latter can only be assessed after sufficient follow-up following initial periodontal therapy.
Clinical Relevance: RPT failed in 24% of the patients after 5 years. Regression analyses demonstrated a significant impact of plaque and patients' compliance on the long-term outcome. Only patients with perfect oral hygiene and excellent compliance should be considered for RPT. Patients should not be treated too soon following initial therapy, since compliance can only be reliably assessed after sufficient follow-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-017-2208-x | DOI Listing |
BMC Oral Health
January 2025
Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura City, 33516, Egypt.
Objective: This systematic review and meta-analysis aim to evaluate the therapeutic potential of boric acid as a local drug delivery agent in the treatment of periodontitis.
Methods: Following PRISMA guidelines, we registered a comprehensive protocol with PROSPERO. By employing PICOS criteria, we evaluated randomized controlled trials assessing the effects of subgingival boric acid application alongside non-surgical periodontal therapy in treatment of periodontitis.
Background: The adjunctive use of connective tissue grafts (CTGs) in the periodontal regeneration of intrabony defects has been proposed to prevent or limit postoperative gingival recession. However, there is limited evidence regarding the long-term clinical performance of this approach.
Methods: This article presents the five-year follow-up outcomes of a combination therapy using CTG, bone substitutes, and biologics for the treatment of deep intrabony defects associated with gingival recession.
J Periodontal Res
January 2025
Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aim: This study aimed to evaluate and compare the results of combination therapy involving bone grafting and two different resorbable collagen membranes in 1-, 2- and 3-wall infrabony defects.
Methods: A total of 174 patients with infrabony defects (≥ 7 mm periodontal probing depth) were randomized to receive deproteinized bovine bone mineral (DBBM) with either a native porcine non-crosslinked collagen membrane (N-CM, control, n = 87) or a novel porcine crosslinked collagen membrane (C-CM, test, n = 87). Clinical parameters, including periodontal probing depth (PPD), clinical attachment level (CAL), and gingival recession (GR), were recorded at baseline, 12 weeks, and 24 weeks.
J Adv Periodontol Implant Dent
September 2024
Department of Periodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India.
Background: The vehicle in a local drug delivery (LDD) system plays a vital role in delivering the active drug component at the diseased site. Liquid/injectable platelet-rich fibrin (i-PRF), an autologous fibrin matrix, might be used as a vehicle to enmesh drugs and deliver locally at the periodontally diseased sites. This study evaluated the efficacy of the drug (ciprofloxacin [Cip])-loaded i-PRF as a LDD system adjunct to subgingival debridement in subjects with periodontal pockets.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Microbiology, Medical Research Institute, Alexandria University, Azarita, Egypt.
Background: Periodontitis is a chronic inflammatory disease caused by the accumulation of biofilm. Antimicrobials have been used as adjuncts to non-surgical periodontal therapy. However, systemic antibiotics often require large dosages to achieve suitable concentrations at the disease site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!