Objective: Caffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant and antitumor actions. The purpose of this research was to investigate the anticancer potential of CAPE and its molecular mechanism in human oral cancer cell lines (YD15, HSC-4 and HN22 cells).
Design: To determine the apoptotic activity of CAPE and identify its molecular targets, trypan blue exclusion assay, soft agar assay, Western blot analysis, DAPI staining, and live/dead assay were performed.
Results: CAPE significantly suppressed transformation of neoplastic cells induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) without inhibiting growth. CAPE treatment inhibited cell growth, increased the cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and augmented the number of fragmented nuclei in human oral cancer cell lines. CAPE activated Bax protein causing it to undergo a conformational change, translocate to the mitochondrial outer membrane, and oligomere. CAPE also significantly increased Puma expression and interestingly Puma and Bax were co-localized.
Conclusion: Overall, these results suggest that CAPE is a potent apoptosis-inducing agent in human oral cancer cell lines. Its action is accompanied by up-regulation of Bax and Puma proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2017.09.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!