A core tenet of precision oncology is the rational choice of drugs to interact with patient-specific biological targets of interest, but it is currently difficult for researchers to obtain consistent and well-supported target information for pharmaceutical drugs. We review current drug-target interaction resources and critically assess how supporting evidence is handled. We introduce the concept of a unified Cancer Targetome to aggregate drug-target interactions in an evidence-based framework. We discuss current unmet needs and the implications for evidence-based clinical omics. The focus of this review is precision oncology but the discussion is highly relevant to targeted therapies in any area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759325 | PMC |
http://dx.doi.org/10.1016/j.tips.2017.08.006 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
The current review delves into the transformative role of precision medicine in addressing Colorectal Cancer [CRC], a pressing global health challenge. It examines closely signalling pathways, genetic and epigenetic modifications, and microsatellite in-stability. The primary focus is on elucidating biomarkers revolutionizing CRC diagnosis and treatment.
View Article and Find Full Text PDFThe severity of COVID 19 symptoms has a direct correlation with lymphopenia, affecting natural killer (NK) cells. SARS-CoV-2 specific "memory" NK cells obtained from convalescent donors can be used as cell immunotherapy. In 2022 a phase I, dose-escalation, single center clinical trial was conducted to evaluate the safety and feasibility of the infusion of CD3/CD56 NK cells against moderate/severe cases of COVID-19 (NCT04578210).
View Article and Find Full Text PDFUnlabelled: Transparent and accurate reporting in early phase dose-finding (EPDF) clinical trials is crucial for informing subsequent larger trials. The SPIRIT statement, designed for trial protocol content, does not adequately cover the distinctive features of EPDF trials. Recent findings indicate that the protocol contents in past EPDF trials frequently lacked completeness and clarity.
View Article and Find Full Text PDFUnlabelled: Early phase dose-finding (EPDF) trials are key in the development of novel therapies, with their findings directly informing subsequent clinical development phases and providing valuable insights for reverse translation. Comprehensive and transparent reporting of these studies is critical for their accurate and critical interpretation, which may improve and expedite therapeutic development. However, quality of reporting of design characteristics and results from EPDF trials is often variable and incomplete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!