This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5001830 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, Viale delle Scienze 7/A, 43124 Parma, Italy.
Electrical contacts are of the greatest importance as they decisively contribute to the overall performance of photoresistors. Undoped κ-GaO is an ideal material for photoresistors with high performance in the UV-C spectral region thanks to its intrinsic solar blindness and extremely low dark current. The quality assessment of the contact/κ-GaO interface is therefore of paramount importance.
View Article and Find Full Text PDFMolecules
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.
MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.
View Article and Find Full Text PDFChemSusChem
January 2025
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, 200072, China.
Electrolyte wettability significantly effects the electrochemical performance of lithium-ion batteries (LIBs). In this study, buoyancy testing is employed to accurately measure the force-time curve of electrolyte penetration into the electrodes and thereby calculate the wettability rate. Electrochemical performance is comprehensively evaluated through CR2025 coin half-cell testing, four-point probe analysis, and C-rate cycling experiments.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Transition metal nitrides have extensive applications, including magnetic storage devices, hardware resistance coatings, and low-temperature fuel cells. This study investigated the structural, electrical, and mechanical properties of thin zirconium nitride (ZrN) films by examining the effects of laser irradiation times. Thin ZrN films were deposited on glass substrates using pulsed DC magnetron sputtering and irradiated with a diode laser for 6 and 10 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!