Adiabatic and non-adiabatic quasiclassical molecular dynamics simulations are performed to investigate the role of the crystal face on hot-atom abstraction of H adsorbates by H scattering from covered W(100) and W(110). On both cases, hyperthermal diffusion is strongly affected by the energy dissipated into electron-hole pair excitations. As a result, the hot-atom abstraction is highly reduced in favor of adsorption at low incidence energy and low coverages, i.e., when the mean free path of the hyperthermal H is typically larger. Qualitatively, this reduction is rather similar on both surfaces, despite at such initial conditions, the abstraction process involves more subsurface penetration on W(100) than on W(110).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4997127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!