Background: The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures.
Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting.
Results: Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results.
Conclusion: At field levels encountered from natural sources or HVDC lines (< 35kV/m), the available data provide reliable evidence that static EF can trigger behavioral responses in invertebrates, but they do not provide evidence for adverse effects of static EF on other biological functions in invertebrates and plants. At far higher field levels (> 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on alterations in physiological functions and morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2017.09.013 | DOI Listing |
PeerJ
January 2025
Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.
Non-indigenous dung beetle (Coleoptera: Scarabaeoidea) species in North America are important contributors to ecosystem functions, particularly in pasture-based livestock systems. Despite the significant body of research surrounding non-indigenous (and often invasive) dung beetles in agricultural contexts, there has been minimal study concerning the impact that these species may have on indigenous dung beetle populations in natural environments. Here we examine the possible impact of the introduced dung beetle on indigenous dung beetle populations via use of indigenous mammal dung.
View Article and Find Full Text PDFElife
January 2025
John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFBMC Genomics
January 2025
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Background: The entomopathogenic fungus, Isaria fumosorosea, shows promise as a biological control agent in managing the diamondback moth (DBM) Plutella xylostella, a highly destructive global pest of cruciferous vegetables. To date, the miRNA-mRNA regulatory networks underlying the immune response of DBM to I. fumosorosea infection are still poorly understood.
View Article and Find Full Text PDFBMC Genomics
January 2025
Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!