Novel archaeal thermostable cellulases from an oil reservoir metagenome.

AMB Express

Department of Biological Sciences, Auburn University, 101 Life Sciences Building, 120W, Samford Avenue, Auburn, AL, 36849, USA.

Published: September 2017

Microbial assemblages were sampled from an offshore deep sub-surface petroleum reservoir 2.5 km below the ocean floor off the coast of Norway, providing conditions of high temperature and pressure, to identify new thermostable enzymes. In this study, we used DNA sequences obtained directly from the sample metagenome and from a derived fosmid library to survey the functional diversity of this extreme habitat. The metagenomic fosmid library containing 11,520 clones was screened using function- and sequence-based methods to identify recombinant clones expressing carbohydrate-degrading enzymes. Open reading frames (ORFs) encoding carbohydrate-degrading enzymes were predicted by BLAST against the CAZy database, and many fosmid clones expressing carbohydrate-degrading activities were discovered by functional screening using Escherichia coli as a heterologous host. Each complete ORF predicted to encode a cellulase identified from sequence- or function-based screening was subcloned in an expression vector. Five subclones was found to have significant activity using a fluorescent cellulose model substrate, and three of these were observed to be highly thermostable. Based on phylogenetic analyses, the thermostable cellulases were derived from thermophilic Archaea and are distinct from known cellulases. Cellulase F1, obtained from function-based screening, contains two distinct cellulase modules, perhaps resulting from fusion of two archaeal cellulases and with a novel protein structure that may result in enhanced activity and thermostability. This enzyme was found to exhibit exocellulase function and to have a remarkably high activity compared to commercially available enzymes. Results from this study highlight the complementarity of hybrid approaches for enzyme discovery, combining sequence- and function-based screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622026PMC
http://dx.doi.org/10.1186/s13568-017-0485-zDOI Listing

Publication Analysis

Top Keywords

function-based screening
12
thermostable cellulases
8
enzymes study
8
fosmid library
8
clones expressing
8
expressing carbohydrate-degrading
8
carbohydrate-degrading enzymes
8
sequence- function-based
8
novel archaeal
4
thermostable
4

Similar Publications

Cement dust is a primary contributor to air pollution and is responsible for causing numerous respiratory diseases. The impact of cement dust exposure on the respiratory health of residents is increasing owing to the demand for construction associated with urbanization. Long-term inhalation of cement dust leads to a reduction in lung function, alterations in airway structure, increased inhalation and exhalation resistance, and heightened work of breath.

View Article and Find Full Text PDF

An increasing number of treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) after the diagnosis of human immunodeficiency virus (HIV) infection. However, data on the association between rapid ART initiation and alterations in brain structure and function remain limited in people with HIV (PWH). A cross-sectional analysis was conducted on HIV-positive men who have sex with men (MSM) undergoing ART.

View Article and Find Full Text PDF

The circle of Willis (CoW) is a circular arrangement of arteries in the human brain, exhibiting significant anatomical variability. The CoW is extensively studied in relation to neurovascular pathologies, with certain anatomical variants previously linked to ischemic stroke and intracranial aneurysms. In an individual CoW, arteries might be absent (aplasia) or underdeveloped (hypoplasia, diameter < 1 mm).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!