A bewildering number of techniques have been developed for transmission electron microscopy (TEM), involving the use of ever more complex combinations of lens configurations, apertures and detector geometries. In parallel, the developments in the field of ion beam instruments have modernized sample preparation and enabled the preparation of various types of materials. However, the desired final specimen geometry is always almost the same: a thin foil of uniform thickness. Here we will show that judicious design of specimen geometry can make all the difference and that experiments can be carried out on the most basic electron microscope and in the usual imaging modes. We propose two sample preparation methods that allow the formation of controlled moiré patterns for general monocrystalline structures in cross-section and at specific sites. We developed moiré image treatment algorithms using an absolute correction of projection lens distortions of a TEM that allows strain measurements and mapping with a nanometer resolution and 10 precision. Imaging and diffraction techniques in other fields may in turn benefit from this technique in perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622038 | PMC |
http://dx.doi.org/10.1038/s41598-017-12695-8 | DOI Listing |
J Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.
View Article and Find Full Text PDFJID Innov
March 2025
Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France.
Our objectives were to explore epidermal barrier defects in dogs with atopic dermatitis and to determine whether the defects are genetically determined or secondary to skin inflammation. First, the expression of filaggrin, corneodesmosin, and claudin1, analyzed using indirect immunofluorescence in skin biopsies collected from 32 healthy and 32 dogs with atopic dermatitis, was weaker in the atopic skin ( .003).
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland.
Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!