The development of methods for obtaining new materials with antimicrobial properties, based on green chemistry principles has been a target of research over the past few years. The present paper describes the phyto-mediated synthesis of metallic nano-architectures (gold and silver) via an ethanolic extract of Melissa officinalis L. (obtained by accelerated solvent extraction). Different analytic methods were applied for the evaluation of the extract composition, as well as for the characterization of the phyto-synthesized materials. The cytogenotoxicity of the synthesized materials was evaluated by Allium cepa assay, while the antimicrobial activity was examined by applying both qualitative and quantitative methods. The results demonstrate the synthesis of silver nanoparticles (average diameter 13 nm) and gold nanoparticles (diameter of ca. 10 nm); the bi-metallic nanoparticles proved to have a core-shell flower-like structure, composed of smaller particles (ca. 8 nm). The Ag nanoparticles were found not active on nuclear DNA damage. The Au nanoparticles appeared nucleoprotective, but were aggressive in generating clastogenic aberrations in A. cepa root meristematic cells. Results of the antimicrobial assays show that silver nanoparticles were active against most of the tested strains, as the lowest MIC value being obtained against B. cereus (approx. 0.0015 mM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622205PMC
http://dx.doi.org/10.1038/s41598-017-12804-7DOI Listing

Publication Analysis

Top Keywords

metallic nano-architectures
8
melissa officinalis
8
silver nanoparticles
8
nanoparticles active
8
nanoparticles
6
phyto-mediated metallic
4
nano-architectures melissa
4
officinalis synthesis
4
synthesis characterization
4
characterization biological
4

Similar Publications

A new method for estimating nanoparticle deposition coverage from a set of weak-contrast SEM images.

Ultramicroscopy

December 2024

Department of Mechanical Engineering, Villanova University, PA 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA 19085, USA. Electronic address:

Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate the sample and eliminate the possibility of reusing it for following processes.

View Article and Find Full Text PDF

Invasiveness modulation of glioma cells by copper complex-loaded nanoarchitectures.

Colloids Surf B Biointerfaces

January 2025

Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, Pisa 56127, Italy; Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, Genoa 16148, Italy. Electronic address:

Article Synopsis
  • Gliomas, a severe type of brain tumor, frequently recur and can metastasize, with limited existing treatments for reducing metastasis, highlighting a need for new anti-metastatic agents.
  • Copper complexes have shown potential as effective anti-metastatic agents, but their use may disrupt healthy tissue balance; thus, incorporating these complexes into nano-architectures can enhance targeted delivery and minimize side effects.
  • Newly developed copper complex-loaded nano-architectures (CuLNAs) significantly reduce glioma cell migration without negatively affecting cell growth, and they modulate key genes involved in the epithelial-to-mesenchymal transition, presenting a promising strategy for anticancer therapies.
View Article and Find Full Text PDF

The construction of crystalline metal-organic frameworks with regular architectures supportive of enhanced mass transport and bubble diffusion is imperative for electrocatalytic applications; however, this poses a formidable challenge. Here, a method is presented that confines the growth of nano-architectures to the liquid-liquid interface. Using this method, vertically oriented single crystalline nanowire arrays of an Ag-benzenehexathiol (BHT) conductive metal-organic framework (MOF) are fabricated via an "in-plane self-limiting and out-of-plane epitaxial growth" mechanism.

View Article and Find Full Text PDF

Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications.

Adv Mater

April 2024

College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.

Ordered mesoporous crystalline frameworks (MCFs), which possess both functional frameworks and well-defined porosity, receive considerable attention because of their unique properties including high surface areas, large pore sizes, tailored porous structures, and compositions. Construction of novel crystalline mesoporous architectures that allows for rich accessible active sites and efficient mass transfer is envisaged to offer ample opportunities for potential energy-related applications. In this review, the rational synthesis, unique structures, and energy applications of MCFs are the main focus.

View Article and Find Full Text PDF

Bi-coloured enhanced luminescence imaging by targeted switch on/off laser MEF coupling for synthetic biosensing of nanostructured human serum albumin.

Photochem Photobiol Sci

December 2023

Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Centro Laser del INFIQC, y Departamento de Química Orgánica del INFIQC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (National University of Cordoba, Argentine), Ciudad Universitaria, 5000, Córdoba, Argentina.

In this communication luminescent bioconjugated human serum albumin nanostructures (HSA NPs) with tiny ultraluminescent gold core-shell silica nanoparticles (Au@SiO-Fl) were designed with enhanced bi-coloured luminescence properties. The HSA NPs were obtained from Human Serum Albumin free (HSA free) through the desolvation method, and Au@SiO-Fl, through modified Turkevich and Störber methods. In this manner, porous HSA Nanostructures of 150.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!