Photosynthesis drives the production of ATP and NADPH, and acts as a source of carbon for primary metabolism. NADPH is also used in the production of many natural bioactive compounds. These are usually synthesized in low quantities and are often difficult to produce by chemical synthesis due to their complex structures. Some of the crucial enzymes catalyzing their biosynthesis are the cytochromes P450 (P450s) situated in the endoplasmic reticulum (ER), powered by electron transfers from NADPH. Dhurrin is a cyanogenic glucoside and its biosynthesis involves a dynamic metabolon formed by two P450s, a UDP-glucosyltransferase (UGT) and a P450 oxidoreductase (POR). Its biosynthetic pathway has been relocated to the chloroplast where ferredoxin, reduced through the photosynthetic electron transport chain, serves as an efficient electron donor to the P450s, bypassing the involvement of POR. Nevertheless, translocation of the pathway from the ER to the chloroplast creates other difficulties, such as the loss of metabolon formation and intermediate diversion into other metabolic pathways. We show here that co-localization of these enzymes in the thylakoid membrane leads to a significant increase in product formation, with a concomitant decrease in off-pathway intermediates. This was achieved by exchanging the membrane anchors of the dhurrin pathway enzymes to components of the Twin-arginine translocation pathway, TatB and TatC, which have self-assembly properties. Consequently, we show 5-fold increased titers of dhurrin and a decrease in the amounts of intermediates and side products in Nicotiana benthamiana. Further, results suggest that targeting the UGT to the membrane is a key factor to achieve efficient substrate channeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2017.09.014 | DOI Listing |
Nat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.
Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China. Electronic address:
Corals are representative of typical symbiotic organisms. The coral-algal (Symbiodinium spp.) symbiosis drives the productivity of entire coral reefs.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.
The plant thylakoid membrane hosting the light-harvesting complex (LHCII) is the site of oxygenic photosynthesis. Contrary to the earlier consensus of a protein-driven single lamellar phase of the thylakoid, despite containing 40% non-bilayer-forming lipids, recent experiments confirm the polymorphic state of the functional thylakoid. What, then, is the origin of this polymorphism and what factors control it? The current Letter addresses the question using a total of 617.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308.
Nature produces ATP, the energy currency, by converting solar energy (photophosphorylation) and chemical energy (substrate-level phosphorylation and oxidative phosphorylation). Green electricity, as a significant and sustainable energy carrier, plays a crucial role in achieving a carbon-neutral society. In this work, we established and verified a novel electrodriven phosphorylation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!