Glial cells were isolated from 1-week-old rat brain and cultured in a serum-free medium supplemented with the hormones insulin, hydrocortisone, and triiodothyronine. After 1 week in culture the cell population consisted mainly of galactocerebroside-positive cells (GC+; oligodendrocytes), the remainder of the cells being positive for glial fibrillary acidic protein (GFAP+; astrocytes). Oligodendrocytes were selectively removed from the cultures by complement-mediated cytolysis. The activities of glutamine synthetase and of various marker enzymes were measured in the nonlysed cells remaining after complement treatment of the cultures and in the culture medium containing proteins of the lysed cells. We found that the cellular activity of glutamine synthetase decreased in parallel with the lysis of GC+ cells and that the activity of glutamine synthetase in the supernatant increased. The activity of glycerol-3-phosphate dehydrogenase, a marker enzyme for oligodendrocytes, was no longer detectable in complement-treated cultures and the activity of glutamine synthetase was markedly lowered, whereas the activity of lactate dehydrogenase was as high as in untreated cultures. The location of glutamine synthetase both in oligodendrocytes and in astrocytes was confirmed by double-label immunocytochemistry with antisera against glutamine synthetase, GC, and GFAP. We conclude that in this culture system glutamine synthetase is expressed in both types of glial cells and that the activity of lactate dehydrogenase is at least one order of magnitude higher in astrocytes than in oligodendrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1988.tb03031.xDOI Listing

Publication Analysis

Top Keywords

glutamine synthetase
32
lactate dehydrogenase
12
activity glutamine
12
glutamine
8
location glutamine
8
synthetase
8
rat brain
8
glial cells
8
astrocytes oligodendrocytes
8
cells activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!