Autologous fat is considered the ideal material for soft-tissue augmentation in plastic and reconstructive surgery. The primary drawback of autologous fat grafting is the high resorption rate. The isolation of mesenchymal stem cells from adipose tissue inevitably led to research focusing on the study of combined transplantation of autologous fat and adipose derived stem cells (ADSCs) and introduced the theory of 'cell-assisted lipotransfer'. Transplantation of ADSCs is a promising strategy, due to the high proliferative capacity of stem cells, their potential to induce paracrine signalling and ability to differentiate into adipocytes and vascular cells. The current study examined the literature for clinical and experimental studies on cell-assisted lipotransfer to assess the efficacy of this novel technique when compared with traditional fat grafting. A total of 30 studies were included in the present review. The current study demonstrates that cell-assisted lipotransfer has improved efficacy compared with conventional fat grafting. Despite relatively positive outcomes, further investigation is required to establish a consensus in cell-assisted lipotransfer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609216 | PMC |
http://dx.doi.org/10.3892/etm.2017.4811 | DOI Listing |
Sci Rep
January 2025
Department of Haematology, Oslo University Hospital, P.O. Box 4950, Oslo, 0424, Norway.
Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.
View Article and Find Full Text PDFCells
January 2025
Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil.
In this article, we explored the role of adipose tissue, especially mesenteric adipose tissue and creeping fat, and its association with the gut microbiota in the pathophysiology and progression of Crohn's disease (CD). CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, influenced by genetic predisposition, gut microbiota dysbiosis, and environmental factors. Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD.
View Article and Find Full Text PDFPLoS One
January 2025
University of California, San Diego, La Jolla, California, United States of America.
Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!