Study Question: What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?
Summary Answer: AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.
What Is Known Already: AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.
Study Design, Size, Duration: Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.
Participants/materials, Setting, Methods: Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.
Main Results And The Role Of Chance: Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.
Large Scale Data: Not applicable.
Limitations, Reasons For Caution: Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.
Wider Implications Of The Findings: Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.
Study Funding And Competing Interest(s): Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909861 | PMC |
http://dx.doi.org/10.1093/molehr/gax050 | DOI Listing |
Front Vet Sci
December 2024
Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.
Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2024
Department of Obstetrics and Gynecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Purpose: Map the nuclear error phenotypes in the two-cell embryo after assisted reproduction using time lapse images and the effect on good quality blastocyst formation.
Methods: Retrospective cohort study using time lapse images, categorizing 2331 two-cell embryos from 392 patient couples and 504 ART cycles categorizing each embryo as mononucleated, multinucleated, micronucleated, binucleated, split nucleation or mixed error. Correlating nuclear error phenotype with good quality blastocyst formation rate (BFR) using contingency tables and unadjusted odds ratio.
J Mol Histol
December 2024
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.
View Article and Find Full Text PDFVet Sci
December 2024
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China.
Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!