Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products.

FEMS Yeast Res

Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.

Published: November 2017

Fatty acids and fatty acid derivatives are important biorenewable products, as well as precursors for further transformation via chemical catalysis. This minireview focuses on recent advances in increasing the production of fatty acids and derived products in the yeast Saccharomyces cerevisiae. The engineering of upstream pathways to increase levels of the required precursors, fatty acid synthase systems to increase expression and to modify chain length, and downstream pathways to produce free fatty acids, fatty acid ethyl esters, fatty alcohols and alkanes are highlighted, and current challenges are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsyr/fox071DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
fatty acid
12
saccharomyces cerevisiae
8
fatty
8
acids derived
8
derived products
8
acids fatty
8
engineering saccharomyces
4
cerevisiae high-level
4
high-level synthesis
4

Similar Publications

Exploring the plant lipidome: techniques, challenges, and prospects.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.

Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent spot analysis is frequently used to investigate immune responsiveness during clinical trials. However, ELISpot classically utilizes peripheral blood mononuclear cell isolates from whole blood, requiring relatively high blood draw volumes and removing both granulocytes and bound drug. Here, we describe a novel protocol whereby CD45 cells are magnetically isolated from human whole blood and co-incubated with serum isolated from the same subject.

View Article and Find Full Text PDF

Rapid and accurate methods for tracing and identifying the origin of lamb are crucial for ensuring food authenticity and quality. This study developed a precise traceability method to determine the origin of lamb by integrating rapid evaporative ionization mass spectrometry (REIMS) with multivariate statistical analysis. Lamb samples from Xilin Gol, Ordos, and Hulun Buir ranches were identified by REIMS fingerprinting within 1 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!