Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A calibration technique that shifts the frame coordinates from the intended coordinates to correct a systematic stereotactic error has been reported for single-brain-pass deep brain stimulation.
Objective: To analyze the intercenter reproducibility of this method for deep brain stimulation.
Methods: A total of 310 leads from 166 patients undergoing surgery were analyzed, including 220 multitrack (primarily 3-track) subthalamic nucleus leads, 17 single-brain-pass subthalamic nucleus leads, and 73 single-brain-pass globus pallidus interna leads. We adopted the previously reported calibration factors. Calibration shifts the frame coordinates from the target coordinates to the left, anterior, and inferior directions by 0, 0.5, or 1 mm, respectively, according to the arc angles in each axis. We analyzed 9 subgroups of single-brain-pass, multitracks, operated sides, technical, and instrumental variations.
Results: In total, the stereotactic error decreased from 1.5 ± 0.8 mm in the distance to the frame coordinates (error calculation before using the calibration technique) to 1.1 ± 0.6 mm in the distance to the intended target coordinates (error after using the calibration technique, 28% reduction, P < .000001). Frame-related errors were 0.1 to 0.3 mm when measured with the stereotactic simulator. The reduction of stereotactic errors by the calibration technique (median 0.4 mm, 0.1-0.7 mm, median 28%, 7%-45% in each subgroup) was significant in 8 of the 9 subgroups (P < .05).
Conclusion: Calibration is an effective and reproducible method for reducing systematic stereotactic errors both in single-brain-pass and multitrack deep brain stimulations, as well as in both sides using various instrumental and technical conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ons/opx183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!