The development and validation of a simple liquid chromatography-tandem mass spectrometry method for polymyxin B1 and B2 quantification in different matrices.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Pharmacy, University at Buffalo, Buffalo, NY 14214, USA; Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; Department for Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States. Electronic address:

Published: October 2017

Polymyxin B has resurfaced as a last-line treatment for multi-drug resistant Gram-negative bacteria. Accurate characterization and quantification of polymyxin B components is necessary to optimize this therapy. We developed and validated a robust, straightforward LC-MS/MS method to quantify polymyxin B1 and B2, the primary polymyxin B components, in various matrices (cation-adjusted Mueller-Hinton broth (CAMHB), human and rat plasma). Of sample preparation approaches investigated, two protein precipitation/extraction methods were developed as part of an analytical strategy based upon reverse-phase LC-MS/MS using electrospray ionization in positive multiple-reaction monitoring mode. Both methods were validated over therapeutically and experimentally relevant concentration ranges (CAMHB: 0.1-8.0μg/mL, rat and human plasma: 0.05-4.0μg/mL). Quality control samples spanning a relevant concentration range were employed to assess intra- and inter-day accuracy (relative error (%RSD)) and precision (coefficient of variation (CV%)). For polymyxin B1 and B2 in CAMHB, inter-day standard deviations were 1.18-4.59% and 0.777-1.23%, respectively, and accuracies were 94.2-99.3% and 94.4-99.1%. For rat plasma, inter-day standard deviations were 1.53%-5.64% and 4.07%-8.26%. Accuracies were 100.6-108.9% and 96.1-108.1%. For human plasma, inter-day standard deviations were 2.77-7.32% and 1.55-7.29%. Accuracies were 89.6-96.4% and 92.9-102.0%. Extraction recoveries for all matrices were >93.5%. Adsorption, storage, and long-term stability were assessed and were acceptable. Accuracy, precision, and cost-efficiency make this an ideal approach for quantifying polymyxin B in in vitro and in vivo samples including those from rat and human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2017.09.031DOI Listing

Publication Analysis

Top Keywords

inter-day standard
12
standard deviations
12
polymyxin components
8
rat plasma
8
relevant concentration
8
rat human
8
human plasma
8
plasma inter-day
8
polymyxin
7
development validation
4

Similar Publications

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Magnetic molecularly imprinted polymers coupled with UPLC-MS/MS for simultaneous detection of 19 steroid hormones in human plasma.

J Chromatogr A

January 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing 100029, China. Electronic address:

Steroid hormones constitute a group of hormones with molecular weights ranging from 200 to 400 daltons, characterized by their highly similar chemical structures. Each hormone within this group holds significant value for the diagnosis of various diseases. Accurate clinical measurement of the levels of each hormone is crucial for the diagnosis in clinical settings.

View Article and Find Full Text PDF

Analysis Profiling of 48 Endogenous Amino Acids and Related Compounds in Human Plasma Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry.

Molecules

December 2024

Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, 3000 Leuven, Belgium.

Analyzing and detecting endogenous amino acids in blood is of crucial importance for the diagnosis of medical conditions and scientific research. Considering the lack of UV chromophores in most of these analytes and the presence of several interfering substances in plasma, the quantification of quite a few amino acids and related compounds presents certain technical challenges. As a blank plasma matrix lacking these endogenous substances does not exist, the surrogate matrix method is used, as well as isotopic internal standards for calibration, to ensure the accuracy and reliability of the study.

View Article and Find Full Text PDF

This study investigated the intra-day and inter-day reliability of electrical impedance myography (EIM) components and explored sex and regional differences in healthy adults' anterior thigh muscles. Using a multifrequency device, impedance values across various frequencies, alongside 50-kHz resistance (R), reactance (Xc), and phase angle (PhA) were assessed in both sexes and at whole anterior thigh, proximal and distal regions. Findings revealed excellent reliability (ICC > 0.

View Article and Find Full Text PDF

Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!