Many dsDNA bacterial viruses (bacteriophages/phages) have long tail structures that serve as organelles for DNA delivery to host targets. These structures, particularly those of Myoviridae and Siphoviridae phages, have an evolutionary relationship with other cellular biological entities that share the common function of penetrating the bacterial envelope. Among these are type VI secretion systems, insecticidal protein complexes, and bacteriocins. Phage tail-like bacteriocins (PTLBs) are widespread in bacteria, comprising different types that likely evolved independently. They can be divided into two major classes: the R-type PTLBs, which are related to contractile Myoviridae phage tails, and the F-type PTLBs, which are related to noncontractile Siphoviridae phage tails. This review provides an overview of the history, biology, and diversity of these entities and also covers recent efforts to utilize these potent bactericidal agents as human therapeutics against bacterial disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-virology-101416-041632 | DOI Listing |
Antibiotics (Basel)
January 2025
Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from , the process is labor-intensive, limiting broader application.
View Article and Find Full Text PDFJ Virol
December 2024
Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
Bacteriophages are viruses infecting bacteria. The vast majority of them bear a tail, allowing host recognition, cell wall perforation, and DNA injection into the host cytoplasm. Using electron cryo-microscopy (cryo-EM) and single particle analysis, we determined the organization of the tail proximal extremity of siphophage T5 that possesses a long flexible tail and solved the structure of its tail terminator protein p142 (TrP).
View Article and Find Full Text PDFRes Microbiol
November 2024
Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. Electronic address:
Trends Microbiol
November 2024
School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA. Electronic address:
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown.
View Article and Find Full Text PDFNat Microbiol
October 2024
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
Tailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!