Platelets have a limited shelf life, due to the risk of bacterial contamination and platelet quality loss. Most platelet storage bags are made of a mixture of polyvinyl chloride with a plasticizer, denoted as pPVC. To improve biocompatibility of pPVC with platelets and to inhibit bacterial biofilm formation, an antifouling polymer coating is developed using mussel-inspired chemistry. A copolymer of N,N-dimethylacrylamide and N-(3-aminopropyl)methacrylamide hydrochloride is synthesized and coupled with catechol groups, named DA51-cat. Under mild aqueous conditions, pPVC is first equilibrated with an anchoring polydopamine layer, followed by a DA51-cat layer. Measurements show this coating decreases fibrinogen adsorption to 5% of the control surfaces. One-step coating with DA51-cat does not coat pPVC efficiently although it is sufficient for coating silicon wafers and gold substrates. The dual layer coating on platelet bags resists bacterial biofilm formation and considerably decreases platelet adhesion. A cationic antimicrobial peptide, E6, is conjugated to DA51-cat then coated on silicon wafers and introduces bactericidal activity to these surfaces. Time-of-flight second ion-mass spectroscopy is successfully applied to characterize these surfaces. pPVC is widely used in medical devices; this method provides an approach to controlling biofouling and bacterial growth on it without elaborate surface modification procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201700839 | DOI Listing |
Transfus Med
January 2025
Research and Development, Finnish Red Cross Blood Service, Vantaa, Finland.
Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.
Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.
Int J Mol Sci
January 2025
Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain.
Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.
View Article and Find Full Text PDFHematology
December 2025
Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
Background: Platelet concentrates play an important role in clinical treatment such as platelet function disorders and thrombocytopenia. In the process of preparation and storage of platelets, centrifugation, leukofiltration, and agitation will cause morphological changes and impaired function of platelets, which is associated with the increase of platelet transfusion refractoriness, and named as platelet storage lesion (PSL).
Method: This paper proposes three major operations (centrifugation, agitation, and leukofiltration) that platelets experience during the preparation and storage process, to explore the effect of physical cues on PSL.
Ann Surg
January 2025
Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
Objective: To determine the feasibility, efficacy, and safety of cold stored compared to room temperature platelet transfusion in patients with traumatic brain injury.
Summary Background Data: Data demonstrating the safety and efficacy of cold stored platelet transfusion are lacking following traumatic brain injury.
Methods: A phase 2, randomized, open label, clinical trial was performed at a single U.
Acta Anaesthesiol Scand
February 2025
Department of Anaesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Background: Haemorrhage is a leading cause of morbidity and mortality in trauma, and prehospital transfusion of blood products is often necessary. Whole blood has been proposed to be the best alternative, but it is unclear whether, and how, storage and transport of the blood in a helicopter affects the blood units. We investigated the coagulation capacity and platelet function in whole blood at different time points during helicopter missions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!